Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637784

RESUMO

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Assuntos
Alternaria , Nanopartículas Metálicas , Quercus , Solanum lycopersicum , Prata/química , Nanopartículas Metálicas/química , Antifúngicos , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Difração de Raios X , Antibacterianos
4.
J Biomol Struct Dyn ; : 1-23, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105230

RESUMO

Since the end of February 2020, the world has come to a standstill due to the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Since then, the global scientific community has explored various remedies and treatments against this virus, including natural products that have always been a choice because of their many benefits. Various known phytochemicals are well documented for their antiviral properties. Research is being carried out to discover new natural plant products or existing ones as a treatment measure for this disease. The three important targets in this regard are-papain like protease (PLpro), spike protein, and 3 chymotrypsin like proteases (3CLpro). Various docking studies are also being elucidated to identify the phytochemicals that modulate crucial proteins of the virus. The paper is simultaneously a comprehensive review that covers recent advances in the domain of the effect of various botanically derived natural products as an alternative treatment approach against Coronavirus Disease 2019 (COVID-19). Furthermore, the docking analyses revealed that rutin (inhibitor of the major protease of SARS-CoV-2), gallocatechin (e.g., interacting with 03 hydrogen bonds with a spike-like protein), lycorine (showing the best binding affinity with amino acids GLN498, THR500 and GLY446 of the spike-like protein), and quercetrin (inhabiting at its residues ASP216, PHE219, and ILE259) are promising inhibitors of SARS­CoV­2.Communicated by Ramaswamy H. Sarma.

5.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903635

RESUMO

Mosquitoes are the potential vectors of several viral diseases such as filariasis, malaria, dengue, yellow fever, Zika fever and encephalitis in humans as well as other species. Dengue, the most common mosquito-borne disease in humans caused by the dengue virus is transmitted by the vector Ae. aegypti. Fever, chills, nausea and neurological disorders are the frequent symptoms of Zika and dengue. Thanks to various anthropogenic activities such as deforestation, industrialized farming and poor drainage facilities there has been a significant rise in mosquitoes and vector-borne diseases. Control measures such as the destruction of mosquito breeding places, a reduction in global warming, as well as the use of natural and chemical repellents, mainly DEET, picaridin, temephos and IR-3535 have proven to be effective in many instances. Although potent, these chemicals cause swelling, rashes, and eye irritation in adults and children, and are also toxic to the skin and nervous system. Due to their shorter protection period and harmful nature towards non-target organisms, the use of chemical repellents is greatly reduced, and more research and development is taking place in the field of plant-derived repellents, which are found to be selective, biodegradable and harmless to non-target species. Many tribal and rural communities across the world have been using plant-based extracts since ancient times for various traditional and medical purposes, and to ward off mosquitoes and various other insects. In this regard, new species of plants are being identified through ethnobotanical surveys and tested for their repellency against Ae. aegypti. This review aims to provide insight into many such plant extracts, essential oils and their metabolites, which have been tested for their mosquitocidal activity against different life cycle forms of Ae. Aegypti, as well as for their efficacy in controlling mosquitoes.


Assuntos
Aedes , Dengue , Repelentes de Insetos , Inseticidas , Infecção por Zika virus , Zika virus , Adulto , Animais , Criança , Humanos , Mosquitos Vetores , Insetos , Repelentes de Insetos/farmacologia , Extratos Vegetais/farmacologia , Inseticidas/farmacologia , Larva
6.
J Cell Mol Med ; 27(5): 593-608, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756687

RESUMO

Centella asiatica is an ethnomedicinal herbaceous species that grows abundantly in tropical and sub-tropical regions of China, India, South-Eastern Asia and Africa. It is a popular nutraceutical that is employed in various forms of clinical and cosmetic treatments. C. asiatica extracts are reported widely in Ayurvedic and Chinese traditional medicine to boost memory, prevent cognitive deficits and improve brain functions. The major bioactive constituents of C. asiatica are the pentacyclic triterpenoid glycosides, asiaticoside and madecassoside, and their corresponding aglycones, asiatic acid and madecassic acid. Asiaticoside and madecassoside have been identified as the marker compounds of C. asiatica in the Chinese Pharmacopoeia and these triterpene compounds offer a wide range of pharmacological properties, including neuroprotective, cardioprotective, hepatoprotective, wound healing, anti-inflammatory, anti-oxidant, anti-allergic, anti-depressant, anxiolytic, antifibrotic, antibacterial, anti-arthritic, anti-tumour and immunomodulatory activities. Asiaticoside and madecassoside are also used extensively in treating skin abnormalities, burn injuries, ischaemia, ulcers, asthma, lupus, psoriasis and scleroderma. Besides medicinal applications, these phytocompounds are considered cosmetically beneficial for their role in anti-ageing, skin hydration, collagen synthesis, UV protection and curing scars. Existing reports and experimental studies on these compounds between 2005 and 2022 have been selectively reviewed in this article to provide a comprehensive overview of the numerous therapeutic advantages of asiaticoside and madecassoside and their potential roles in the medical future.


Assuntos
Triterpenos , Triterpenos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glicosídeos , Cicatrização
7.
Biotechnol Bioeng ; 120(1): 82-94, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36224758

RESUMO

Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Plantas/genética , Engenharia Metabólica , Compostos Fitoquímicos
8.
Front Nutr ; 9: 949554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386956

RESUMO

Allium sativum L. (Garlic) is a fragrant herb and tuber-derived spice that is one of the most sought-after botanicals, used as a culinary and ethnomedicine for a variety of diseases around the world. An array of pharmacological attributes such as antioxidant, hypoglycemic, anti-inflammatory, antihyperlipidemic, anticancer, antimicrobial, and hepatoprotective activities of this species have been established by previous studies. A. sativum houses many sulfur-containing phytochemical compounds such as allicin, diallyl disulfide (DADS), vinyldithiins, ajoenes (E-ajoene, Z-ajoene), diallyl trisulfide (DATS), micronutrient selenium (Se) etc. Organosulfur compounds are correlated with modulations in its antioxidant properties. The garlic compounds have also been recorded as promising immune-boosters or act as potent immunostimulants. A. sativum helps to treat cardiovascular ailments, neoplastic growth, rheumatism, diabetes, intestinal worms, flatulence, colic, dysentery, liver diseases, facial paralysis, tuberculosis, bronchitis, high blood pressure, and several other diseases. The present review aims to comprehensively enumerate the ethnobotanical and pharmacological aspects of A. sativum with notes on its phytochemistry, ethnopharmacology, toxicological aspects, and clinical studies from the retrieved literature from the last decade with notes on recent breakthroughs and bottlenecks. Future directions related to garlic research is also discussed.

9.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144583

RESUMO

Due to its eco-friendliness, cost-effectiveness, ability to be handled safely, and a wide variety of biological activities, the green plant-mediated synthesis of nanoparticles has become increasingly popular. The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using Elaeagnus umbellata (fruit) and the evaluation of its antibacterial, antioxidant, and phytotoxic activities. For the synthesis of AgNPs, fruit extract was treated with a 4 mM AgNO3 solution at room temperature, and a color change was observed. In UV-Visible spectroscopy, an absorption peak formation at 456 nm was the sign that AgNPs were present in the reaction solution. Scanning electron microscopy and physicochemical X-ray diffraction were used to characterize AgNPs, which revealed that they were crystalline, spherical, and had an average size of 11.94 ± 7.325 nm. The synthesized AgNPs showed excellent antibacterial activity against Klebsiella pneumoniae (14 mm), Staphylococcus aureus (13.5 mm), Proteus mirabilis (13 mm), and Pseudomonas aeruginosa (12.5 mm), as well as considerable antioxidant activity against DPPH with 69% inhibition at an IC50 value of 43.38 µg/mL. AgNPs also exhibited a concentration-dependent effect on rice plants. Root and shoot length were found to be positively impacted at all concentrations, i.e., 12.5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL. Among these concentrations, the 50 µg/mL concentration of AgNPs was found to be most effective. The plant biomass decreased at higher AgNP exposure levels (i.e., 100 µg/mL), whereas 50 µg/mL caused a significant increase in plant biomass as compared to the control. This study provides an eco-friendly method for the synthesis of AgNPs which can be used for their antibacterial and antioxidant activities and also as growth promoters of crop plants.


Assuntos
Elaeagnaceae , Nanopartículas Metálicas , Antibacterianos/química , Antioxidantes/química , Frutas/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química
10.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1525-1536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36173445

RESUMO

Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.


Assuntos
Aloe , COVID-19 , Humanos , Aloe/química , Antracenos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Biomed Pharmacother ; 155: 113658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162370

RESUMO

Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Óxidos/toxicidade , Cobre , Prata , Espécies Reativas de Oxigênio , Óxido de Magnésio , Dióxido de Silício , Nanopartículas Metálicas/toxicidade , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Citocinas , Extratos Vegetais/farmacologia
12.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014433

RESUMO

Nanotechnology, the science of the recent era, has diverse applications in agriculture. Selenium (Se) is a non-metal and an essential micronutrient for animals and humans. In this study, selenium nanoparticles (SeNPs) were biosynthesized by using Olea ferruginea fruit extracts. The size, shape, chemical nature, and identification of functional groups involved in the synthesis of SeNPs were studied by UV-visible spectroscopy, Scanning Electron Microscope (SEM), and Fourier Transform Infra-Red (FTIR) spectrometry. SeNP synthesis was confirmed by an absorption peak at 258 nm by UV-visible spectroscopy. SEM showed that SeNPs were spherical, smooth, and between 60 and 80 nm in size. FTIR spectrometry confirmed the presence of terpenes, alcohols, ketones, aldehydes, and esters as well as phyto-constituents, such as alkaloids and flavonoids, that possibly act as reducing or capping agents of SeNPs in an aqueous solution of Olea ferruginea. Antimicrobial activity was examined against bacterial pathogens, such as Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, as well as fungal pathogens, such as Aspergillus niger and Fusarium oxysporum, by using the well-diffusion method. Antioxidant activity was observed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ABTs assay, and reducing power assay. At a higher concentration of 400 ppm, biosynthesized SeNPs showed an inhibition zone of 20.5 mm, 20 mm, 21 mm, and 18.5 mm against Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, respectively. Similarly, SeNPs also demonstrated a zone of inhibition against Aspergillus niger and Fusarium oxysporum of 17.5 and 21 mm, respectively. In contrast to Olea ferruginea fruit extracts, Olea ferruginea-mediated SeNPs demonstrated strong antimicrobial activity. By performing the DPPH, ABTs, and reducing power assay, SeNPs showed 85.2 ± 0.009, 81.12 ± 0.007, and 80.37 ± 0.0035% radical scavenging potential, respectively. The present study could contribute to the drug development and nutraceutical industries.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Olea , Selênio , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli , Frutas , Fusarium , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Selênio/química , Selênio/farmacologia , Staphylococcus aureus
13.
Mol Phylogenet Evol ; 177: 107588, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35907594

RESUMO

Juncaceae is a cosmopolitan family belonging to the cyperid clade of Poales together with Cyperaceae and Thurniaceae. These families have global economic and ethnobotanical significance and are often keystone species in wetlands around the world, with a widespread cosmopolitan distribution in temperate and arctic regions in both hemispheres. Currently, Juncaceae comprises more than 474 species in eight genera: Distichia, Juncus, Luzula, Marsippospermum, Oreojuncus, Oxychloë, Patosia and Rostkovia. The phylogeny of cyperids has not been studied before in a complex view based on most sequenced species from all three families. In this study, most sequenced regions from chloroplast (rbcL, trnL, trnL-trnF) and nuclear (ITS1-5.8S-ITS2) genomes were employed from more than a thousand species of cyperids covering all infrageneric groups from their entire distributional range. We analyzed them by maximum parsimony, maximum likelihood, and Bayesian inference to revise the phylogenetic relationships in Juncaceae and Cyperaceae. Our major results include the delimitation of the most problematic paraphyletic genus Juncus, in which six new genera are recognized and proposed to recover monophyly in this group: Juncus, Verojuncus, gen. nov., Juncinella, gen. et stat. nov., Alpinojuncus, gen. nov., Australojuncus, gen. nov., Boreojuncus, gen. nov. and Agathryon, gen. et stat. nov. For these genera, a new category, Juncus supragen. et stat. nov., was established. This new classification places most groups recognized within the formal Juncus clade into natural genera that are supported by morphological characters.


Assuntos
Cyperaceae , Regiões Árticas , Sequência de Bases , Teorema de Bayes , Cyperaceae/genética , Filogenia
14.
Front Pharmacol ; 13: 824132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645819

RESUMO

Background: COPD (chronic obstructive pulmonary disease) is a serious health problem worldwide. Present treatments are insufficient and have severe side effects. There is a critical shortage of possible alternative treatments. Medicinal herbs are the most traditional and widely used therapy for treating a wide range of human illnesses around the world. In several countries, different plants are used to treat COPD. Purpose: In this review, we have discussed several known cellular and molecular components implicated in COPD and how plant-derived chemicals might modulate them. Methods: We have discussed how COVID-19 is associated with COPD mortality and severity along with the phytochemical roles of a few plants in the treatment of COPD. In addition, two tables have been included; the first summarizes different plants used for the treatment of COPD, and the second table consists of different kinds of phytochemicals extracted from plants, which are used to inhibit inflammation in the lungs. Conclusion: Various plants have been found to have medicinal properties against COPD. Many plant extracts and components may be used as novel disease-modifying drugs for lung inflammatory diseases.

15.
J Cell Mol Med ; 26(11): 3083-3119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502487

RESUMO

Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure-activity relationships, bioavailability and synergistic interactions with other drugs.


Assuntos
Piper betle , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Etnofarmacologia , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
16.
Front Pharmacol ; 13: 827411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592415

RESUMO

Attention deficit hyperactivity disorder (ADHD) is commonly a neurodevelopmental behavioural disorder in children and adolescents. Mainly characterized by symptoms like lack of attention, hyperactivity, and impulsiveness, it can impact the overall mental development of the one affected. Several factors, both genetic and non-genetic, can be responsible for this disorder. Although several traditional treatment methods involve medication and other counselling techniques, they also come with different side effects. Hence, the choice is now shifting to alternative treatment techniques. Herbal treatments are considered one of the most popular complementary and alternative medicine (CAM) administered. However, issues related to the safety and efficacy of herbal remedies for the treatment of ADHD need to be investigated further. This study aims to find out the recent advancement in evidence-based use of herbal remedies for ADHD by a comprehensive and systematic review that depicts the results of the published works on herbal therapy for the disorder. The electronic databases and the references retrieved from the included studies present related randomized controlled trials (RCTs) and open-label studies. Seven RCTs involving children and adolescents diagnosed with ADHD met the inclusion criteria. There is a fair indication of the efficacy and safety of Melissa officinalis L., Bacopa monnieri (L.) Wettst., Matricaria chamomilla L., and Valeriana officinalis L. from the studies evaluated in this systematic review for the treatment of various symptoms of ADHD. Limited evidence was found for Ginkgo biloba L. and pine bark extract. However, various other preparations from other plants did not show significant efficacy. There is inadequate proof to strongly support and recommend the administration of herbal medicines for ADHD, but more research is needed in the relevant field to popularize the alternative treatment approach.

17.
J Ethnopharmacol ; 284: 114744, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656666

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional knowledge is a particular form of practice or skill set that was developed in ancient times and was sustained through generations via the passing of knowledge, essentially confined within a specific tribe, local people, or family lineages. Ethnodermatological use of medicinal plants in India is still a subject to conduct more studies to see if there is chemical, microbiological, and/or clinical evidence, from a scientific perspective, of their effectiveness for those skin disorders. Thus, this review can be the basis for further studies and may provide targets for drug development. AIM OF THE STUDY: We compile and emphasize the most important part of ethnodermatology, namely, traditional knowledge of medicinal plants and their applications for several skin diseases in India. We also include a brief review and explanation on dermatology in Ayurvedic and Unani medicine. We review the pharmacological activity of extracts derived from some of the most cited plants against problem skin diseases as well. MATERIALS AND METHODS: Different kinds of key phrases such as "Indian traditional ethnodermatology", "ethnodermatology", "ethnobotany", "skin diseases", "Ayurveda dermatology", "pharmacological activity" were searched in online search servers/databases such as Google Scholar (https://scholar.google.com/), ResearchGate (https://www.researchgate.net/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), NISCAIR Online Periodicals Repository (NOPR) (http://nopr.niscair.res.in/). Based upon the analyses of data obtained from 178 articles, we formulated several important findings which are a summary shown in Tables. Tables. A total of 119 records of plants' uses have been found across India against 39 skin diseases. These are depicted with their localities of report, parts used, and preparation and administration methods against particular skin diseases. RESULTS: The knowledge and utilisation of herbal medicine in the Indian subcontinent has great potential to treat different kinds of human skin disorders. The administration of extracts from most of the plant species used is topical and few only are administrated orally. We also investigated the pharmacological activity of the extracts of the most cited plants against mice, bacterial and fungal pathogens, and human cells. CONCLUSIONS: Complementary therapy for dermatological problems and treatment remains the main option for millions of people in the Indian subcontinent. This review on the practices of ethnobotanical dermatology in India confirms the belief that their analysis will accelerate the discovery of new, effective therapeutic agents for skin diseases. However, more studies and clinical evidence are still required to determine if the identified species may contribute to skin condition treatment, particularly in atopic eczema. Today, ethnodermatology is a well-accepted international discipline and many new practices have been initiated in numerous countries. We hope this article will further accelerate the development of this area to identify a new generation of natural human skin treatments that will help meet the growing consumer demand for safe, sustainable, and natural treatments. In this context, research on plants utilised in ethnodermatology in India and elsewhere should be intensified.


Assuntos
Fármacos Dermatológicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Fármacos Dermatológicos/isolamento & purificação , Etnobotânica , Etnofarmacologia , Humanos , Índia , Ayurveda/métodos , Camundongos , Dermatopatias/tratamento farmacológico
18.
Biomed Pharmacother ; 146: 112555, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954639

RESUMO

Human exposure to radiation has expanded considerably in recent years, due to a wide range of medical, agricultural, and industrial applications. Despite its beneficial utilities, radiation is also known to have a deleterious effect on cells and tissues, largely through the creation of free radicals, which cause severe damage to biological systems through processes such as DNA double/single-strand fragmentation, protein modification, and upregulation of lipid peroxidation pathways. In addition, radiation damages genetic material while inducing hereditary genotoxicity. Developing measures to counter radiation-induced damage is thus considered to be of significant importance. Considering the inherent capability of plants to survive radiative conditions, certain plants and natural compounds have been the subject of investigations to explore and harness their natural radioprotective abilities. Podophyllum hexandrum, an Indian medicinal plant with several known traditional phytotherapeutic uses, is considered in particular to be of immense therapeutic importance. Recent studies have been conducted to validate its radioprotective potential alongside discovering its protective mechanisms following γ-radiation-induced mortality and disorder in both mice and human cells. These findings show that Podophyllum and its constituents/natural compounds protect the lungs, gastrointestinal tissues, hemopoietic system, and testis by inducing DNA repair pathways, apoptosis inhibition, free radical scavenging, metal chelation, anti-oxidation and anti-inflammatory mechanisms. In this review, we have provided an updated, comprehensive summary of ionizing radiations and their impacts on biological systems, highlighting the mechanistic and radioprotective role of natural compounds from Podophyllum hexandrum.


Assuntos
Berberidaceae , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Dose Máxima Tolerável , Medicina Tradicional , Mitocôndrias/efeitos dos fármacos , Protetores contra Radiação/química
19.
Biomed Pharmacother ; 143: 112175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649336

RESUMO

Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.


Assuntos
Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Withania , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , COVID-19/virologia , Humanos , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/toxicidade , Segurança do Paciente , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Raízes de Plantas , Psicotrópicos/isolamento & purificação , Psicotrópicos/farmacologia , Psicotrópicos/toxicidade , Medição de Risco , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Withania/química , Tratamento Farmacológico da COVID-19
20.
Conserv Physiol ; 9(1): coab073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548925

RESUMO

The discipline 'urban ethnopharmacology' emerged as a collection of traditional knowledge, ancient civilizations, history and folklore being circulated since generations, usage of botanical products, palaeobotany and agronomy. Non-traditional botanical knowledge increases the availability of healthcare and other essential products to the underprivileged masses. Intercultural medicine essentially involves 'practices in healthcare that bridge indigenous medicine and western medicine, where both are considered as complementary'. A unique aspect of urban ethnopharmacology is its pluricultural character. Plant medicine blossomed due to intercultural interactions and has its roots in major anthropological events of the past. Unani medicine was developed by Khalif Harun Al Rashid and Khalif Al Mansur by translating Greek and Sanskrit works. Similarly, Indo-Aryan migration led to the development of Vedic culture, which product is Ayurveda. Greek medicine reached its summit when it travelled to Egypt. In the past few decades, ethnobotanical field studies proliferated, especially in the developed countries to cope with the increasing demands of population expansion. At the same time, sacred groves continued to be an important method of conservation across several cultures even in the urban aspect. Lack of scientific research, validating the efficiency, messy applications, biopiracy and slower results are the main constrains to limit its acceptability. Access to resources and benefit sharing may be considered as a potential solution. Indigenous communities can copyright their traditional formulations and then can collaborate with companies, who have to provide the original inventors with a fair share of the profits since a significant portion of the health economy is generated by herbal medicine. Search string included the terms 'Urban' + 'Ethnopharmacology', which was searched in Google Scholar to retrieve the relevant literature. The present review aims to critically analyse the global concept of urban ethnopharmacology with the inherent plurality of the cross-cultural adaptations of medicinal plant use by urban people across the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA